

Integrated Vehicle-Based Safety Systems (IVBSS) Initiative

Chris Flanigan FMCSA Office of Analysis, Research, and Technology

What is the IVBSS Program?

- University of Michigan Transportation Research Institute (UMTRI)-led cooperative agreement with U.S. Department of Transportation (DOT)
 - National Highway Traffic Safety Administration (NHTSA) and Federal Motor Carrier Safety Administration (FMCSA)
- Develop integrated crash warning systems in light vehicles and heavy trucks to estimate safety benefits and driver acceptance
- 54-month, 2-phase, \$32.2M program
 - \$25M from U.S. DOT, \$7.2M from the partners

IVBSS Phase I and II

- Phase I (Years 1 and 2)
 - identify crash problem (develop scenarios)
 - functional requirements
 - system performance guidelines
 - develop and conduct verification tests (test track and on-road)
- Phase II (Years 3 and 4)
 - build vehicle fleets and verify performance
 - conduct extended pilot test
 - conduct field operational test of ten trucks

IVBSS Subsystems

- Forward crash warning
 - Address rear-end crashes
- Lateral drift warning
 - Address lane/road departure crashes
- Lane change/merge warning
 - Address lane change crashes

Heavy Truck Platform

Overview

- Design, develop, verify and implement in heavy trucks an integrated crash warning system that addresses:
 - Rear-end crashes
 - Lane departure crashes
 - Lane change/merge crashes
- It will appear to drivers as a single system with an associated, integrated Driver Vehicle Interface (DVI)

Scope of IVBSS Requirements

- Autonomous system
- No active vehicle control
- Technologies must be available for field operational test (FOT)

Systems Engineering

- Sensor descriptions
 - Tractor-only solution
- Subsystem descriptions
- Driver Vehicle Interface
- Objective Testing

Heavy Truck Sensor Suite

LCM Concept of Operation

- Provides side object presence indicators to the driver and warnings of unsafe maneuvers
- Directional side visual display and directional auditory display
- Consistent with LDW warning display
- Combination of MA/COM radars and Backspotter radars

LCM General Operation

Cond.			Visual Displays	Auditory Display
Code	Initiation Condition	Side	Forward	(Directional)
LCM-0	No vehicle detected adjacent to subject vehicle		FAT-N	None
LCM-1	Adjacent vehicle detected (use caution)	• •	FAT-N	None
LCM-2	Adjacent vehicle detected AND corresponding turn signal is active AND lane change maneuver NOT detected	• •	FAT-N	None
LCM-3	Adjacent vehicle detected AND lane change maneuver IS detected	• •	SIDE COLLISION ALERT	Right/Left channel side collision warning

LDW Concept of Operation

- Track lane boundaries
- Measure vehicle position and lateral velocity relative to lane
- Assess threat of lateral departure to warn driver when they are about to depart lane.

LDW General Operation

Initiation Condition	Side	Visual Displays Forward	Auditory Display
Normal Driving - Good boundaries Vehicle maintaining lane position, nothing nearby, good marker on both sides.	• • •	FAT-N	None L DW
Normal Driving - Missing left boundary Vehicle maintaining lane position, nothing nearby, good marker on right, missing marker on left.	• • •	FAT-N	Availability None
Departure into Clear Space Lane departure in the absence of object in adjacent region. Turn signal off, dashed or solid lane boundary	• • •	Out of Lane	Directional lane excursion warning
Departure into Occupied Space Lane departure with object detected in adjacent region. Dashed or solid lane boundary. Same as LCM warning	• •	SIDE COLLISION ALERT	Directional side collision warning

FCW Concept of Operation

- Includes both a headway warning system and an imminent collision detection system
- Provides drivers with graded cautionary warnings when headway time to a forward object drops below four established threshold levels
- Provides collision warnings whenever a significant risk of collision is detected

FCW Warning Logic Detection & Headway Alerts

Code	Initiation Condition	Forward Display	Auditory Display
FCW-1	Forward object detected	Object detected FAT-N	None
FCW-2	Forward object within 3s headway (and no higher priority alert) AND opening OR closing	3 seconds V	None
FCW-3	Forward object within 2s headway (and no higher priority alert) AND opening OR closing	seconds v	Opening=None Closing=Short Alert
FCW-4	Forward object within 1s headway (and no higher priority alert) AND opening OR closing	TAT-N	Opening=None Closing=Double Alert

Note: Headway alerts provided when SV speed is greater than 10 mph

FCW Warning Logic Collision Alerts

Code	Initiation Condition	Forward Display	Auditory Display
FCW-5	Forward object within 0.5s headway AND closing	COLLISION ALERT	Repeating Alert
FCW-6	Slow moving vehicle alert	COLLISION ALERT	Repeating Alert
FCW-7	Stationary vehicle/object alert	COLLISION ALERT	Double Alert

Arbitration

- Develop a rule-based approach
 - use simple ratings of message priorities to support rule development
- More complex rules and exceptions to the rules requires taking into account:
 - vehicle kinematics
 - cues to driver alertness
 - indications of driver awareness of the threat
 - crash risks

DVI Concept of Operation

- Focus is on supporting a timely and appropriate response from the driver
- Integration should support the development of an accurate and functional mental model of the IVBSS
- Support the driver in avoiding errors, distraction, confusion, and information overload
- Heavy truck drivers are significantly different than passenger car drivers—they have formal training

Development Process – Heavy Truck Platform

Objective Testing Truck Setup

Sensor/Camera Locations

Rear-looking M/A-Com radars

Forward-looking camera

Track Tests

Rear-end verification Tests

2.9 Rear End with Slower Moving Motorcycle

Lane-Change Verification Test Guidelines

3.3 Lane Change into adjacent P1 vehicle on Merge

3.5 Lane Change into Approaching P1 vehicle

Multiple Threat, On-Road, & No-Warn

Road Departure Verification Test Procedures

4.2 Road Departure Toward Clear Shoulder

4.3 Road Departure Toward Clear Shoulder on Curve

4.5 Road Departure Toward Curve with Excessive Speed

Phase II – Early Tasks

- Complete final vehicle integration design
- Launch vehicle fleet builds
- Integrate final FOT data acquisition system
- Tune system further to reduce false alerts

Heavy Truck (HT) FOT Scope

- Testing will occur over a ten month period
- The volume of data would represent approximately 8 years of HT driving data
- A data server will be installed at the HT fleet distribution center
 - Approximately 600GB of data expected

Fleet Location

- FOT will be run out of Con-Way Freight's Romulus, MI terminal
 - Includes MI's lower peninsula, northern Ohio/Indiana, and Chicago
 - Local P&D is 41% limited access highway
 - Line-haul is 96% limited access highway
 - Estimated total mileage exposure for FOT fleet is 82% limited access, 18% service roads
- Driver age is from 25–65 (all male)

Heavy Truck FOT Data

- Subjective data
 - Questionnaires, focus groups, debriefings
- Objective data
 - Multi-CPU DAS that is unobtrusive
 - Full-time dataset describing:
 - Vehicle performance
 - Driver performance
 - Vehicle location
 - Driving environment

FMCSA's Role

- Assure safety of commercial heavy trucks
 - encourage deployment of safety equipment that is deemed beneficial to heavy truck safety
 - assure safety is not adversely affected by overloading heavy truck operators with information
- Assure IVBSS accounts for unique requirements of operating heavy trucks
 - e.g., headway information critical for heavy truck drivers due to evasive capabilities

Program Status

- Completed Phase I
 - HT systems passed verification tests
- Public meeting on results in April 2008
 - http://www.its.dot.gov/ivbss/ivbss_2008pm.htm
- Phase II kickoff meeting held in June 2008
- Track and on-road tests completed in October 2008
- Extended pilot test to start in November 2008
- Field operational test to start in early 2009

Contact Information

Chris Flanigan FMCSA

Office of Analysis, Research and Technology

Chris.Flanigan@dot.gov

(202) 385-2384

http://www.its.dot.gov/ivbss/