

Highly Automated Commercial Vehicles (HACVs)

Meeting of the Motor Carrier Safety Advisory Committee – June 12 – 13, 2017

> Amina Fisher and Luke Loy, Office of Vehicle and Roadside Operations

Brian Routhier, Office of Technology

FMCSA

SAE LEVELS OF AUTOMATION

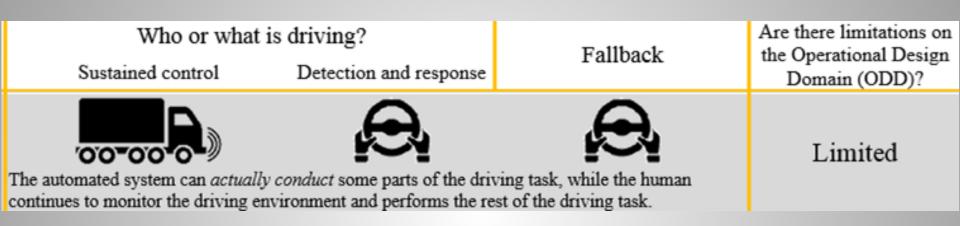
Level 0: No Automation

Who or what Sustained control	is driving? Detection and response	Fallback	Are there limitations on the Operational Design Domain (ODD)?
<u>P</u>	<u>e</u>	None	N/A

No automation

• Driver remains in complete control

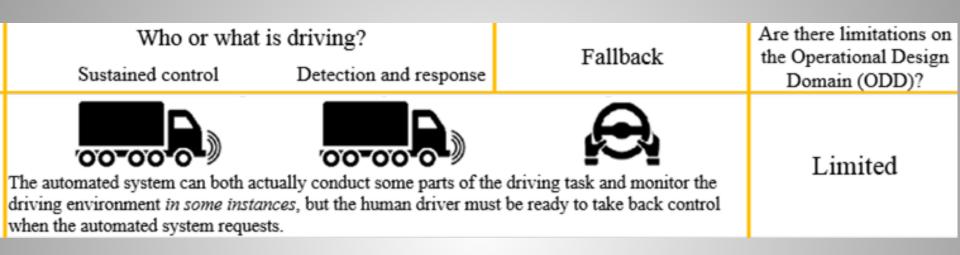
Level 1: Assistive Automation


Who or what is driving?	Fallback	Are there limitations on
Sustained control Detection and response		the Operational Design Domain (ODD)?
The automated system can sometimes assist the human driver contask.	aduct some parts of the driving	Limited

 HACV controls EITHER speed OR lane keeping but not both

Driver must monitor HACV at all times

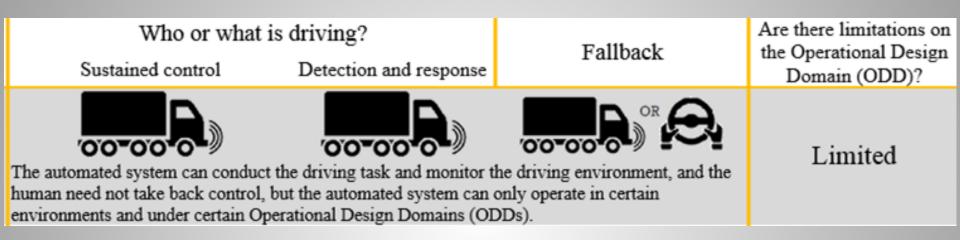
Level 2: Partial Automation



 HACV controls BOTH speed AND lane keeping

Driver must monitor HACV at all times

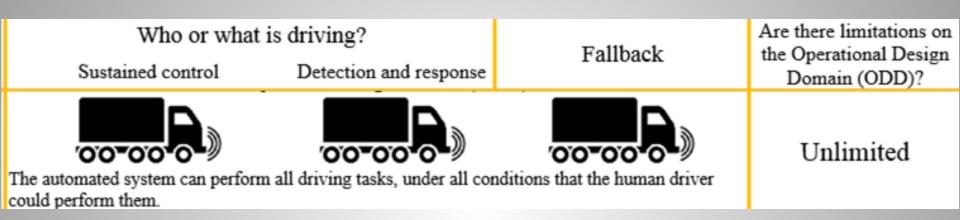
Level 3: Conditional Automation



• HACV in full control in some situations

 HACV alerts when driver must regain manual control

Level 4: Highly Automated



• HACV in full control in some situations

 HACV will NEVER request the driver to regain manual control

Level 5: Fully Automated

• HACV in full control in <u>all situations</u>

 HACV will NEVER request the driver to regain manual control

SAE Levels 4 and 5

HIGHLY AUTOMATED COMMERCIAL VEHICLES (HACVs)

Methods for Automation

METHOD ONE

- Vehicle-to-Vehicle (V2V)
 - Outfitted vehicles communicate with one another and provide alerts to their drivers
- Vehicle-to-Infrastructure (V2I)
 - Outfitted vehicles communicate with compatible infrastructure and provide alerts to their drivers
- Higher Level 2 Technologies
 - Adaptive Cruise Control (ACC)
 Crash Imminent Braking (CIB)
 - Lane Keeping Assist (LKA)
- Automatic Emergency Braking (AEB)

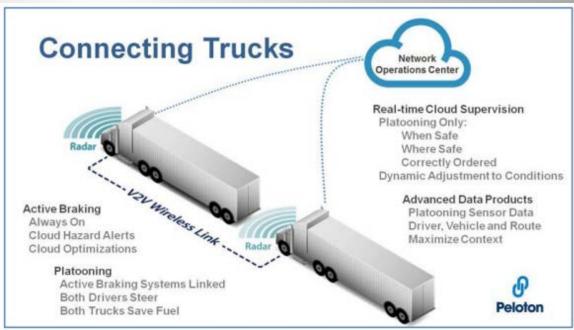
METHOD TWO

Mapping, Lidar, advanced cameras, and AI technologies

Industry Demonstrations of HACVs

- Freightliner
 - Testing in Nevada
- Uber ATG (Otto)
 - Over-the-road demonstrations
 - Promotional video
- Mobile Eye / Delphi
 - AV package for OEMs

- Google
 - Patent for self-delivery truck
- Starsky Robotics
 - Testing in Nevada
 - Promotional video
- Embark
 - Testing in Nevada
 - Promotional video


SAE Level 2 | Connected Vehicles (CVs)

TRUCK PLATOONING

Components of Platooning

- Vehicle-to-Vehicle (V2V) connection
- Vehicles are driver-operated
- Following drivers are under longitudinal control
- Hazard alerts
- Active braking

Industry Demonstrations of Connected Vehicle Platooning

- Daimler
 - Truck platooning in live traffic
- Smart Columbus
 - Driver assisted truck platooning

RESEARCH ACTIVITIES

Ongoing/Completed Research

- Advanced driver fatigue research
- Human factors evaluations of automated commercial vehicle concepts
- Volpe FMCSR Review

Planned Research

- Development of brake performance specifications for safe truck platoons
- HACV sensor performance guidelines
- HACV monitor/operator fatigue study

Amina Fisher, Mechanical Engineer
Vehicle and Roadside Operations Division, FMCSA

Amina.Fisher@dot.gov

Luke Loy, Mechanical Engineer
Vehicle and Roadside Operations Division, FMCSA
Luke.Loy@dot.gov

Brian Routhier, Transportation Specialist
Office of Analysis, Research, and Technology, FMCSA
Brian.Routhier@dot.gov