

Highly Automated Commercial Vehicles (HACVs)

Meeting of the Motor Carrier Safety Advisory Committee – June 12 – 13, 2017

> Amina Fisher and Luke Loy Office of Vehicle and Roadside Operations Brian Routhier, Office of Technology FMCSA

SAE LEVELS OF AUTOMATION

Level 0: No Automation

Who or what is driving? Sustained control Detection and response		Fallback	Are there limitations on the Operational Design Domain (ODD)?
æ	æ	None	N/A

• No automation

• Driver remains in complete control

Level 1: Assistive Automation

Who or what is driving? Sustained control Detection and response		Fallback	Are there limitations on the Operational Design Domain (ODD)?
The automated system can <i>sometimes</i> task.	assist the human driver con	duct some parts of the driving	Limited

- HACV controls EITHER speed OR lane keeping but not both
- Driver must monitor HACV at all times

Level 2: Partial Automation

Who or what is drivi Sustained control Dete	ng? ection and response	Fallback	Are there limitations on the Operational Design Domain (ODD)?
The automated system can actually conduct	some parts of the driv	ving task, while the human	Limited
continues to monitor the driving environme	nt and performs the re	st of the driving task.	

 HACV controls BOTH speed AND lane keeping

• Driver must monitor HACV at all times

Level 3: Conditional Automation

HACV in full control in <u>some situations</u>

• HACV alerts when driver must regain manual control

Level 4: Highly Automated

HACV in full control in <u>some situations</u>

• HACV will NEVER request the driver to regain manual control

Level 5: Fully Automated

• HACV in full control in <u>all situations</u>

• HACV will NEVER request the driver to regain manual control

HIGHLY AUTOMATED COMMERCIAL VEHICLES (HACVs)

SAE Levels 4 and 5

Methods for Automation

METHOD ONE

- Vehicle-to-Vehicle (V2V)
 - Outfitted vehicles communicate with one another and provide alerts to their drivers
- Vehicle-to-Infrastructure (V2I)
 - Outfitted vehicles communicate with compatible infrastructure and provide alerts to their drivers
- Higher Level 2 Technologies
 - Adaptive Cruise Control (ACC)
 - Lane Keeping Assist (LKA)
- Crash Imminent Braking (CIB)
- Automatic Emergency Braking (AEB)

METHOD TWO

• Mapping, Lidar, advanced cameras, and AI technologies

Industry Demonstrations of HACVs

- Freightliner
 - Testing in Nevada
- Uber ATG (Otto)
 - Over-the-road demonstrations
 - Promotional video
- Mobile Eye / Delphi
 - AV package for OEMs

- Google
 - Patent for self-delivery truck
- Starsky Robotics
 - Testing in Nevada
 - Promotional video
- Embark
 - Testing in Nevada
 - Promotional video

TRUCK PLATOONING

SAE Level 2 | Connected Vehicles (CVs)

Components of Platooning

- Vehicle-to-Vehicle (V2V) connection
- Vehicles are driver-operated
- Following drivers are under lateral and longitudinal control
- Hazard alerts
- Active braking

Industry Demonstrations of Connected Vehicle Platooning

- Daimler
 - Truck platooning in live traffic
- Smart Columbus
 - Driver assisted truck platooning

RESEARCH ACTIVITIES

Ongoing/Completed Research

- Advanced driver fatigue research
- Wireless Roadside Inspection (WRI) field operational test
- Human factors evaluations of automated commercial vehicle concepts
- Volpe FMCSR Review

Planned Research

- Development of brake performance specifications for safe truck platoons
- HACV sensor performance guidelines
- HACV monitor/operator fatigue study

Amina Fisher, Mechanical Engineer Vehicle and Roadside Operations Division, FMCSA <u>Amina.Fisher@dot.gov</u>

Luke Loy@dot.gov

Brian Routhier, Transportation Specialist Office of Analysis, Research, and Technology, FMCSA <u>Brian.Routhier@dot.gov</u>